0 руб.
0 товар(ов)

Правильные многогранники

Правильные многогранники, их всего пять: тетраэдр, октаэдр, куб (другое название гексаэдр), додекаэдр и икосаэдр:

Правильный многогранник - тетраэдртетраэдр
Правильный многогранник - октаэдроктаэдр
Правильный многогранник - кубкуб
Правильный многогранник - додекаэдрдодекаэдр
Правильный многогранник - икосаэдрикосаэдр
  
 
 
Почему эти пять геометрических тел называют - правильные многогранники?
Стороны правильных многогранников являются правильными многоугольниками. А правильные многоугольники это те, у которых, в свою очередь, равны все стороны (например: треугольник, квадрат).
Причина возникновения слова правильные в этом, что все правильные многогранники состоят из правильных многоугольников. Но здесь надо учитывать маленькую, но очень важную деталь. Правильные многогранники могут состоять только из однородных многоугольников. Например, только из квадратов. В терминах математики, правильные многогранники состоят из однородных многоугольников.
 
 

Популярное

Куб Принца Руперта

В выпуске 25 «Волшебных граней» мы обратили взор читателя на то, что разрезая куб плоскостью, мы получаем в точке разреза сечение, имеющее форму...

Статья в журнале Наука и Жизнь

Один из самых известных в нашей стране журналов - популяризаторов науки опубликовал на своих страницах материал об издании «Волшебные грани».

Многогранник и высокая мода

Находясь в компании модной одежды и аксессуаров, многогранник чувствует себя вполне уверенно.

3D – календарь ромбододекаэдр на 2021 год

  Изобретение календаря замечательное событие для человечества. То, что год состоит из 12ти месяцев ни для кого не секрет.  С тех пор люди самыми различными способами группируют...

Волшебные грани в пунктах самовывоза

Для Вашего удобства мы снизили стоимость доставки наборов "Волшебные грани" в разы!

Производство. Выпуск Волшебных граней № 27

Мы приоткрываем завесу таинства – как производится наша продукция. И сделаем это на примере...

Колючие звезды на башнях

Представьте себе историческое здание, архитектурный ансамбль, который украшают звёздчатые многогранники. И не просто здание, а целый дворец! Возможно ли такое?