0 руб.
0 товар(ов)

Тетраэдр

Тетраэдр

Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, «хедра» - означает грань (тетраэдр – четырехгранник).

Поэтому на вопрос - "что такое тетраэдр?", можно дать следующее определение: "Тетраэдр это геометрическое тело из четырех граней, каждая их которых - правильный треугольник".

Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел.

Тетраэдр имеет следующие характеристики:

  • Тип грани – правильный треугольник;
  • Число сторон у грани – 3;
  • Общее число граней – 4;
  • Число рёбер примыкающих к вершине – 3;
  • Общее число вершин – 4;
  • Общее число рёбер – 6;

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Является ли тетраэдр пирамидой? Да, тетраэдр это треугольная пирамида у которой все стороны равны.

Может ли пирамида быть тетраэдром? Только если это пирамида с треугольным основанием и каждая из её сторон равносторонний треугольник.

Математические характеристики тетраэдра

Радиус описанной сферы тетраэдра

Тетраэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы тетраэдра определяется по формуле:

Радиус сферы описанной вокруг тетраэдра

 

 , где a - длина стороны .

Сфера вписанная в тетраэдр

Сфера может быть вписана внутрь тетраэдра.

Радиус вписанной сферы тетраэдра определяется по формуле:

Радиус сферы вписанной в тетраэдр

площадь поверхности тетраэдра

Площадь поверхности тетраэдра

Площадь поверхности тетраэдра

Для нагладности, площадь поверхности тетраэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон тетраэдра (это площадь правильного треугольника) умноженной на 4. Либо воспользоваться формулой: Площадь поверхности тетраэдра

Объем тетраэдра

Объем тетраэдра определяется по следующей формуле:

Объем тетраэдра

 

 

Вариант развертки

Тетраэдр можно изготовить самостоятельно. Бумага или картон самый подходящий вариант. Для сборки потребуется бумажная развёртка - единая деталь с линиями сгибов.

Платон древний грек
Выбираем цвет для многогранника.

Древнегреческий философ Платон ассоциировал тетраэдр с "земным" элементом огонь, поэтому для построения модели этого правильного многогранника мы выбрали красный цвет.

развертка тетраэдра
На рисунке представлена развертка тетраэдра:

Заметим, что это не единственный вариант развертки.

Для построения модели Вы можете скачать развертку в формате pdf  и распечатать на листе формата А4:
- если Вы предполагаете распечатать на цветном принтере - цветная развертка
- если Вы предполагаете использовать для сборки цветной картон - развертка

Видео. Тетраэдр из набора "Волшебные грани"

Вы можете изготовить модель тетраэдра воспользовавшись деталями для сборки из набора "Волшебные грани".

Волшебные грани платоновы тела

Сборка многогранника из набора:

 

вращение готового многогранника:

Видео. Вращение всех правильных многогранников

 

Популярное

Футбольный мяч - главный участник Чемпионата мира 2018

Он круглый, но развёртку деталей для его сборки никто не отменял!

Меркаба - энергетический многогранник

По мнению некоторых духовных учений уже привычный для нас многогранник - соединение двух...

Домик для птиц

Студией Артемия Лебедева была предложена форма скворечника в виде многогранника. В качестве геометрической формы был...

Практическое применение развёрток

Достаточно часто возникает вопрос о практическом применении бумажных развёрток.Какой смысл в...

Миры Ричарда Суини

Молодой британский дизайнер Ричард Суини (Richard Sweeney) создает удивительные скульптуры из...

Звезда надежды

Звезда — это образ божественной идеи, божественной воли, согласно которой возник и начал вращаться в Пространстве и жить наш Свет, Мир.

Практическое применение

Когда мы демонстрируем многогранники, собранные из наборов «Волшебные грани», люди часто задают один и тот же вопрос, – а...