0 руб.
0 товар(ов)

Тетраэдр

Тетраэдр

Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, «хедра» - означает грань (тетраэдр – четырехгранник).

Поэтому на вопрос - "что такое тетраэдр?", можно дать следующее определение: "Тетраэдр это геометрическое тело из четырех граней, каждая их которых - правильный треугольник".

Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел.

Тетраэдр имеет следующие характеристики:

  • Тип грани – правильный треугольник;
  • Число сторон у грани – 3;
  • Общее число граней – 4;
  • Число рёбер, примыкающих к вершине – 3;
  • Общее число вершин – 4;
  • Общее число рёбер – 6;

Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Является ли тетраэдр пирамидой? Да, тетраэдр это треугольная пирамида у которой все стороны равны.

Может ли пирамида быть тетраэдром? Только если это пирамида с треугольным основанием и каждая из её сторон равносторонний треугольник.

Отметим, что очень редко, но встречаются геометрические тела, составленные не из правильных треугольников, и их тоже называют тетраэдры, так как они имеют четыре грани.

Математические характеристики тетраэдра

Радиус описанной сферы тетраэдра

Тетраэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы тетраэдра определяется по формуле:

Радиус сферы описанной вокруг тетраэдра

 

 , где a - длина стороны.

Сфера вписанная в тетраэдр

Сфера может быть вписана внутрь тетраэдра.

Радиус вписанной сферы тетраэдра определяется по формуле:

Радиус сферы вписанной в тетраэдр

площадь поверхности тетраэдра

Площадь поверхности тетраэдра

Площадь поверхности тетраэдра

Для наглядности, площадь поверхности тетраэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон тетраэдра (это площадь правильного треугольника) умноженной на 4. Либо воспользоваться формулой: Площадь поверхности тетраэдра

Объем тетраэдра

Объем тетраэдра определяется по следующей формуле:

Объем тетраэдра

 

высота тетраэдра

Высота тетраэдра определяется по следующей формуле:

формула высоты тетраэдра

Расстояние до центра основания тетраэдра определяется по формуле:

 расстояние до центра основания тетраэдра

Вариант развертки

Тетраэдр можно изготовить самостоятельно. Бумага или картон самый подходящий вариант. Для сборки потребуется бумажная развёртка - единая деталь с линиями сгибов.

Платон древний грек
Выбираем цвет для многогранника.

Древнегреческий философ Платон ассоциировал тетраэдр с "земным" элементом огонь, поэтому для построения модели этого правильного многогранника мы выбрали красный цвет.

развертка тетраэдра
На рисунке представлена развертка тетраэдра:

Заметим, что это не единственный вариант развертки.

Для построения модели Вы можете скачать развертку в формате pdf  и распечатать на листе формата А4:
- если Вы предполагаете распечатать на цветном принтере - цветная развертка
- если Вы предполагаете использовать для сборки цветной картон - развертка

Видео. Тетраэдр из набора "Волшебные грани"

Вы можете изготовить модель тетраэдра воспользовавшись деталями для сборки из набора "Волшебные грани".

Волшебные грани платоновы тела

Сборка многогранника из набора:

 

Подробная сборка от Алексея Жигулева (youtube-канал Оригами)

 

вращение готового многогранника:

Видео. Вращение всех правильных многогранников

Популярное

Многогранники в архитектуре. Часть 2

Визитная карточка Республики Беларусь - новое здание Национальной библиотеки в Минске. Проект нового здания был разработан еще в конце 80-х годов прошлого века и в 1989...

Флексо-куб

Приходилось ли вам сталкиваться с кубом, грани которого могут изменять свой цвет? Если да, то вполне вероятно вы уже сталкивались с...

Куб Принца Руперта

В выпуске 25 «Волшебных граней» мы обратили взор читателя на то, что разрезая куб плоскостью, мы получаем в точке разреза сечение, имеющее форму...

Головоломка звёздчатый октаэдр

Это новый, весьма необычный способ создать модель Звёздчатого многогранника открытого 1619 году немецким математиком и астрономом Иоганном Кеплером.

Правильные многогранники

Правильные многогранники, их всего пять: тетраэдр, октаэдр, куб (другое название гексаэдр),...

Платоновы тела. Платоновы многогранники

Именем Древнегреческого ученого - Платона названа группа из пяти геометрических тел. Пять многогранников, которые математики называют - правильные, мы чаще всего в...

Развертки тел вращения

Что будет, если плоскую геометрическую фигуру, например прямоугольник, начать быстро вращать относительно одной из его сторон?  Одним лишь вращением мы можем...