0 руб.
0 товар(ов)

Октаэдр

Октаэдр

Древние греки дали многограннику имя по числу граней. «Окто» означает восемь, «хедра» - означает грань (октаэдр – восьмигранник).

Поэтому на вопрос - "что такое октаэдр?", можно дать следующее определение: "Октаэдр это геометрическое тело из восьми граней, каждая их которых - правильный треугольник".

Многогранник относится к правильным многогранникам и является одним из пяти Платоновых тел.

Октаэдр имеет следующие характеристики:

  • Тип грани – правильный треугольник;
  • Число сторон у грани – 3;
  • Общее число граней – 8;
  • Число рёбер примыкающих к вершине – 4;
  • Общее число вершин – 6;
  • Общее число рёбер – 12;

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°.

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Октаэдр можно представить в виде двух правильных пирамид с четырехугольным основанием соединенных друг с другом через это основание.

Математические характеристики октаэдра

Октаэдр вписанный в сферу

Октаэдр может быть помещен в сферу (вписан), так, что каждая из его вершин будет касаться внутренней стенки сферы.

Радиус описанной сферы октаэдра определяется по формуле:

Радиус описанной сферы октаэдра

 

, где a - длина стороны.

сфера вписанная в октаэдр

Сфера может быть вписана внутрь октаэдра.

Радиус вписанной сферы октаэдра определяется по формуле:

Радиус вписанной сферы октаэдра

площадь поверхности октаэдра

Площадь поверхности октаэдра

Площадь поверхности октаэдра

Для нагладности, площадь поверхности октаэдра можно представить в виде площади развёртки. Площадь поверхности можно определить как площадь одной из сторон октаэдра (это площадь правильного треугольника) умноженной на 8. Либо воспользоваться формулой: Площадь поверхности октаэдра

объем октаэдра

Объем октаэдра определяется по следующей формуле:

Объем октаэдра

 

 

Вариант развертки

Октаэдр можно изготовить самостоятельно. Бумага или картон самый подходящий вариант. Для сборки потребуется бумажная развёртка - единая деталь с линиями сгибов.

platon
Выбираем цвет для многогранника.

Древнегреческий философ Платон ассоциировал октаэдр с "земным" элементом воздух, поэтому для построения модели этого правильного многогранника мы выбрали серый цвет.

развертка октаэдра
На рисунке представлена развертка октаэдра:

Заметим, что это не единственный вариант развертки.

Для построения модели Вы можете скачать развертку в формате pdf  и распечатать на листе формата А4:
- если Вы предполагаете распечатать на цветном принтере - цветная развертка
- если Вы предполагаете использовать для сборки цветной картон - развертка

Классический вариант раскраски предполагает окраску октаэдра черыремя различными цвветами, причем таким образом, что каждая грань имеет свой цвет отличный от соседней и только противоположные не соприкасающиеся друг с другом грани окрашиваются в одинаковые цвета.

Вариант окраски представлен на рисунке. Вы можете скачать развертку с соответствующей раскраской граней.Oktaehdr1 2развертка октаэдра четыре цвета

Видео. Октаэдр из набора "Волшебные грани"

Вы можете изготовить модель октаэдра воспользовавшись деталями для сборки из набора "Волшебные грани".

Волшебные грани 12

Сборка многогранника из набора:

 

Подробная сборка от Алексея Жигулева (youtube-канал Оригами)

 

вращение готового многогранника:

Видео. Вращение правильных многогранников

Популярное

Флексо-куб

Приходилось ли вам сталкиваться с кубом, грани которого могут изменять свой цвет? Если да, то вполне вероятно вы уже сталкивались с...

Платоновы тела. Платоновы многогранники

Именем Древнегреческого ученого - Платона названа группа из пяти геометрических тел. Пять многогранников, которые математики называют - правильные, мы чаще всего в...

Календарик – додекаэдр

Как вы думаете, что общего у додекаэдра и календаря?

Какой клей выбрать?

На первый взгляд может показаться, что выбор клея, задача совсем простая, тем более для бумаги (картона). Но, когда получаешь отзывы как от ребят, так...

Миры Ричарда Суини

Молодой британский дизайнер Ричард Суини (Richard Sweeney) создает удивительные скульптуры из...

Колючие звезды на башнях

Представьте себе историческое здание, архитектурный ансамбль, который украшают звёздчатые многогранники. И не просто здание, а целый дворец! Возможно ли такое?

Многогранники в архитектуре. Александрийский маяк

Александрийский маяк — одно из 7 чудес света, был построен в III веке до н. э. в египетском городе Александрия, чтобы корабли могли благополучно миновать рифы на пути в александрийскую...

Учительский портал