0 руб.
0 товар(ов)

Усечённый октаэдр

Усечённый октаэдр
Многогранник получается при последовательном срезании каждой из вершин октаэдра.

Усечённый октаэдр - полуправильный выпуклый многогранник, обладающий двумя свойствами:
1. Все грани являются правильными многоугольниками двух типов - шестиугольник и четырехугольник;
2. Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую.

Архимед

Усечённый октаэдр является одним из 13 тел Архимеда.

Архимедовы тела являются полуправильными многогранниками в том смысле, что их грани - правильные многоугольники, но они не одинаковы при этом сохраняется условие одного из типов пространственной симметрии: тетраэдрического, октаэдрического или икосаэдрического.

 

Видео. Процесс преобразования октаэдра в усечённый октаэдр

Усечение всех шести вершин октаэдра приводит к образованию усечённого октаэдра. Треугольные грани исходного многогранника теряют в площади и преобразуются в шестиугольные грани.

Видео. Сборка многогранника из единой развертки

Видео от наших партнеров - команда "ART KOSEKOMA", наглядно демонстрирует как развертка преобразуется в геометрическую фигуру:

Развертка

На рисунке представлена развертка усечённого октаэдра:

Развертка звездчатого октаэдра

Для построения модели Вы можете скачать развертку в формате pdf  и распечатать на листе формата А4:
- если Вы предполагаете распечатать на цветном принтере - цветная развертка;

- если Вы предполагаете использовать цветную бумагу- развертка.

 

Готовый набор

Волшебные грани 18
Для сборки многогранника мы можем вам предложить уже готовые развёртки - вырезанные и подогнутые.
Для этого вам нужно воспользоваться деталями набора Волшебные грани № 18.
Кроме того, в самом выпуске вы найдете информацию о строении многогранника.
 
Волшебные грани № 18 сборка многограника
Многогранники, из набора Волшебные грани № 18:
 
Сборка усеченного октаэдра из набора "Волшебные грани"
 
Вращение готового многогранника, собранного из этих деталей:

Популярное

Люстра из многогранника

Подвесной потолочный светильник или по-простому - люстра, ещё никогда не был так близок к точным математическим формам.

Как собирать многогранники без клея?

До сих пор мы активно применяли для сборки многогранников из наборов «Волшебные грани» клей. Более того, настоятельно рекомендовали применять именно клей Супер-ПВА. Есть ли...

Миры Ричарда Суини

Молодой британский дизайнер Ричард Суини (Richard Sweeney) создает удивительные скульптуры из...

Естественные многогранники

В естественной среде правильные многогранники можно встретить в виде кристаллов (минералов). Форму тетраэдра передает сурьменистый сернокислый натрий.

Mногогранники в компьютерной игре

Нечасто удается встретить многогранники за пределами учебников математики. И если такие геометрические формы как куб, призма и цилиндр встречаются повседневно, то...

Многогранники в архитектуре. Часть 1

Архитектурные шедевры находятся в разных уголках земного шара и отражают особенности человеческой души. Тайные людские желания воплощаются в форме необыкновенных зданий. В...

Разрезание Дьюдени

Можно ли разрезать треугольник на такое количество частей, чтобы из них можно было сложить квадрат?