0 руб.
0 товар(ов)

Головоломка звёздчатый октаэдр

головоломка звёздчатый октаэдр

Это новый, весьма необычный способ создать модель Звёздчатого многогранника открытого 1619 году немецким математиком и астрономом Иоганном Кеплером.

 

В одной из предыдущих статей мы рассказали о головоломке в виде многогранника, когда шесть одинаковых фигур необходимо было сложить таким образом, чтобы образовался многогранник.
В журнале «Квант» (ноябрь 1984) была опубликована статья о том, как сделать головоломку, имеющую те же принципы сборки, но для многогранника – «звёздчатый октаэдр».

Автор – Игорь Глушков (г.Обнинск) предлагает следующую идею.  Звёздчатый октаэдр (или звёздчатый многогранник Кеплера) можно разрезать на четыре одинаковые части и превратить в интересную головоломку. Задачей будет собрать эти четыре детали между собой таким образом, чтобы получился многогранник.

деталь головоломки вид №1
деталь головоломки вид №2
деталь головоломки вид №3
деталь головоломки вид №4

Каждую из деталей можно склеить из плотной бумаги или картона. Вариант развертки детали можно скачать. Для сборки многогранника необходимо распечатать четыре таких листа.

развертка звездчатый октаэдр головоломка
Линии сгиба обозначены строго пунктирной линией.
Последовательность сборки:
1. Распечатать 4 листа
2. Вырезать каждую развёртку детали
3. Склеить каждую деталь
4. Собрать головоломку.
все детали головоломки
Красным цветом закрашена поверхность детали, которая при сборке головоломки должна находиться внутри многогранника. Синим цветом – та часть, которая находится снаружи.
 
Звёздчатый октаэдр
Собранная модель многогранника - Звёздчатый октаэдр. Геометрические размеры = 190 x 170 x 170 мм
 

Популярное

Многогранники в компьютерной игре

Нечасто удается встретить многогранники за пределами учебников математики. И если такие геометрические формы как куб, призма и цилиндр встречаются повседневно, то...

Звезда игры престолов

  Популярный телесериал «Игра престолов», интересен не только закрученным сюжетом, игрой актеров и мастерским погружением в эпоху средневековья, но и тем, что активно использует...

Отличие выпусков № 12 и № 36 Волшебных граней

Когда мы готовили 36-ой выпуск «Волшебные грани», у наших коллег возник вопрос: «Почему мы опять собираемся говорить о правильных многогранниках,...

Многогранники из ленты

Статья в журнале «Наука и Жизнь» рассказывает о достаточно необычном способе построения многогранников.

Как собирать многогранники без клея?

До сих пор мы активно применяли для сборки многогранников из наборов «Волшебные грани» клей. Более того, настоятельно рекомендовали применять именно клей Супер-ПВА. Есть ли...

Люстра из многогранника

Подвесной потолочный светильник или по-простому - люстра, ещё никогда не был так близок к точным математическим формам.

Многогранники в архитектуре. Часть 5

Архитекторы с древних времен применяли элементы многогранников в создании своих творений. В современно мире этот подход выделяет здания среди тысяч других.