0 руб.
0 товар(ов)

Звёздчатый октаэдр (или соединение двух тетраэдров)

соединение двух тетраэдров

--- . ---

Красная пирамида прознает белую, или наоборот. А может это комплекс пирамид, направленных в разные стороны света. Эти фигуры всегда загадка.

--- . ---

 

Представленное изображение данного многогранника иллюстрирует именно второе его название - соединение двух тетраэдров. Так Вы можете представить себе тетраэдр красного цвета, направленный вверх сквозь который проходит бежевый тетраэдр направленный вниз.

Однако математики предпочитают именовать многогранник звёздчатым октаэдром.

Звёздчатый октаэдр можно было бы признать правильным многогранником, так как все его грани - правильные треугольники одинакового размера и все углы между ними равны.

Но на самом деле это геометрическое тело не является шестым правильным многогранником наравне с пятью известными Платоновыми телами. Причина в том, что в определении правильного многогранника присутствует слово выпуклый, то есть все грани должны лежать по одну сторону от плоскости, проходящей через любую из них.

Популярное

Звезда хаоса в Москве

Испанский художник Okuda создал в Москве яркую скульптуру в форме звезды.

Домик для птиц

Студией Артемия Лебедева (https://www.artlebedev.ru/) была предложена форма скворечника в виде многогранника. В качестве геометрической...

Многогранники в архитектуре. Александрийский маяк

Александрийский маяк — одно из 7 чудес света, был построен в III веке до н. э. в египетском городе Александрия, чтобы корабли могли благополучно миновать рифы на пути в александрийскую...

С какого выпуска Волшебных граней начать?

Предположим, вы впервые увидели на прилавке книжного магазина или на страницах в интернете издание «Волшебные грани». Хочется попробовать? Но вот вопрос, какой выпуск взять на пробу....

Многогранники в архитектуре. Часть 2

Визитная карточка Республики Беларусь - новое здание Национальной библиотеки в Минске. Проект нового здания был разработан еще в конце 80-х годов прошлого века и в 1989...

Куб Принца Руперта

В выпуске 25 «Волшебных граней» мы обратили взор читателя на то, что разрезая куб плоскостью, мы получаем в точке разреза сечение, имеющее форму...

Полуправильные многогранники

Полуправильные многогранники - это несколько групп многогранников: 1. Архимедовы тела; 2....