0 руб.
0 товар(ов)

Звёздчатый октаэдр (или соединение двух тетраэдров)

соединение двух тетраэдров

--- . ---

Красная пирамида прознает белую, или наоборот. А может это комплекс пирамид, направленных в разные стороны света. Эти фигуры всегда загадка.

--- . ---

 

Представленное изображение данного многогранника иллюстрирует именно второе его название - соединение двух тетраэдров. Так Вы можете представить себе тетраэдр красного цвета, направленный вверх сквозь который проходит бежевый тетраэдр направленный вниз.

Однако математики предпочитают именовать многогранник звёздчатым октаэдром.

Звёздчатый октаэдр можно было бы признать правильным многогранником, так как все его грани - правильные треугольники одинакового размера и все углы между ними равны.

Но на самом деле это геометрическое тело не является шестым правильным многогранником наравне с пятью известными Платоновыми телами. Причина в том, что в определении правильного многогранника присутствует слово выпуклый, то есть все грани должны лежать по одну сторону от плоскости, проходящей через любую из них.

Популярное

Симфония металла

Обработка металла это очень сложный технологический процесс. Но существуют мастера, кто умеет вытачивать многогранники из металла внутри другого...

Изгибаемые многогранники

Может ли многогранник изгибаться? Наверное, это какая-то ошибка? А может это уже и не многогранник? Оказывается, существуют изгибаемые многогранники.

Как собирать многогранники без клея?

До сих пор мы активно применяли для сборки многогранников из наборов «Волшебные грани» клей. Более того, настоятельно рекомендовали применять именно клей Супер-ПВА. Есть ли...

Многогранники - предметы интерьера

Многогранники могут стать украшением вашего дома, создав изюминку в интерьере.

Многогранники на фестивале науки

Фестиваль Увлекательной Науки состоится в Москве 24 и 25 апреля 2015 года на физфаке Московского педагогического университета (станция метро Спортивная).

Футбольный мяч - главный участник Чемпионата мира 2018

Он круглый, но развёртку деталей для его сборки никто не отменял!

Школа 2005 дополнительные школьные занятия по геометрии

 Можно ли проводить дополнительные школьные занятия по геометрии собирая модели многогранников? Конечно же да. Нас пригласили в школу № 2005 (г. Москва), чтобы показать как...