0 руб.
0 товар(ов)
Аналогичным способом можно свернуть куб (рис. 2). Его грани также выстраиваются в цепочку, а чтобы изменить направление ленты для завершения формообразования, достаточно перегнуть ее по диагонали квадрата (задача на построение куба из ленты публиковалась в журнале «Наука и жизнь» № 10, 1972 г.).
Так, ничем на первый взгляд не примечательная бумажная лента при нанесении на ее поверхность узора превращается в заготовку для построения самых разнообразных многогранников. На основе различных узоров можно создать все правильные многогранники, кроме додекаэдра. Это объясняется отсутствием у плоских узоров осей симметрии 5-го, 7-го и высших порядков — иначе говоря, сплошной узор из пятиугольников построить невозможно.
Построение октаэдра и икосаэдра осуществляется на основе узора из правильных треугольников (рис. 3 и рис. 4). Свернув для октаэдра кольцо из шести, а для икосаэдра — из десяти треугольников, перегибаем ленту в обратную сторону и продолжаем сворачивать такие же кольца.
Узоры наших лент — это частный случай сетей симметрии Шубникова — Лавеса (см. рис. 5). Треугольные ячейки получаются наложением двух пар зеркальных гексагональных решеток, развернутых друг относительно друга на 90°, а квадратные — совмещением квадратных решеток под углом 45° друг к другу. С этих позиций процесс образования многогранников из фокуса превращается в теоретически обоснованное и закономерное явление.
В самом деле, когда сворачивается кольцо будущего многогранника, то в буквальном смысле производится перенос элементарной ячейки решетки на определенный шаг, то есть осуществляется переносная симметрия. Меняя направление формообразования за счет перегиба ленты в обратную сторону, производим мысленный поворот ячейки вокруг узла решетки, то есть проявляется уже симметрия поворотная. Стало быть, заготовка из ленты обеспечивает поворотно-переносную симметрию. Такая поворотно-переносная симметрия в наших построениях может осуществляться с углами поворотов: 30°, 45°, 60°, 90°, 120°, 150°, 180°. В этом и состоит весь секрет способа образования из плоской ленты объемных тел.
Таким образом, ясно, что могут существовать только два типа лент с углами разбивки, кратными 30° и 45°.Из них получается четыре правильных многогранника: куб, октаэдр, тетраэдр, икосаэдр — и целое семейство однородных многогранников (см. фото на обложке).
В прекрасном сочинении Иоганна Кеплера «О шестиугольных снежинках» есть очень меткое замечание: «Среди правильных тел первым по праву считается куб, первозданная фигура, отец всех остальных тел. Октаэдр, имеющий столько же вершин, сколько у куба граней, является как бы его супругой...» Действительно, все элементы образующихся из нашей ленты сложных форм являются элементами куба или октаэдра, либо того и другого вместе. Построение простых многогранников не представляет особых затруднений. Но чтобы сложить из ленты сложные звездчатые формы, понадобятся специальные приспособления для удержания еще не соединенных между собой колец— скрепки, зажимы и тому подобное. Создание оригинальных по своей форме многогранников чрезвычайно занимательно самим процессом формообразования. Лента имеет лицо и оборот, которые попеременно или одновременно участвуют в построении граней тела; каждый перегиб позволяет вести формообразование в двух направлениях. Отсюда нетрудно представить целое семейство игр-головоломок на основе ленты. Например, сложить рисунок, узор, орнамент, фрагменты которого разбросаны по ленте в заданном порядке.
Способ построения многогранников из ленты, может статься, послужит человеку не только для развлечения. Ждет своего создателя метод получения объемных объектов путем намотки. Возможно, в недалеком будущем войдут в наш быт и оригинальные упаковки, и детали интерьера, и — кто знает! — оболочки космических аппаратов, созданные из обыкновенной ленты.
«Наука и Жизнь» (1989 № 6 А.Черенков, В.Храмов)
Можно ли представить икосаэдр в виде более простых многогранников?...
В этой статье мы постараемся ответить на вопрос: «Можно ли купить для класса Волшебные грани используя бюджетные средства»?
Популярный телесериал «Игра престолов», интересен не только закрученным сюжетом, игрой актеров и мастерским погружением в эпоху средневековья, но и тем, что активно использует...
Знакомые каждому с детства коробочки для Биг-Мака и картошки, стаканчик для Кока-Колы так же делают из бумажных разверток.
Один из самых известных в нашей стране журналов - популяризаторов науки опубликовал на своих страницах материал об издании «Волшебные грани».
По мнению некоторых духовных учений уже привычный для нас многогранник - соединение двух тетраэдров или ...
Это небольшая «шуточная» задача поможет Вам на некоторое время занять ваших детей! Какой пластиковый тетраэдр* нужно расплавить, чтобы из...