0 руб.
0 товар(ов)

Самая прочная конструкция

Самая прочная конструкция

Какое из известных нам геометрических тел обладает наибольшей прочностью? Наиболее устойчиво к внешним деформациям?

 

 

Тетраэдр (правильный многогранник) образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов и т.д. Стержни испытывают только продольные нагрузки.
Что же кроется за термином жёсткость?
Жёсткость — это способность конструктивных элементов сопротивляться деформации при внешнем воздействии.
Для понимания этого термина упростим задачу, перейдем от объемных моделей к плоским.
Если возьмём три металлические или деревянные планки, закрепим их концы булавками или гвоздиками так, чтобы получить треугольник, то увидим, что нам не удастся изменить форму полученного треугольника.
жесткая конструкция три доски
жесткая конструкция направление силы
Правильный треугольник, треугольник у которого все стороны равны, обладает самой высокой сопротивляемостью к деформациям.
 
не жесткая конструкция направление силы
Дощечки, собранные в форме квадрата, могут сместиться после приложения силы. Меняются внутренние углы.
Таким образом, четырехугольник (квадрат) не является жесткой фигурой, то есть подвержен деформации.
мост из треугольников
Стороны треугольника определяют его углы однозначно.
Из всех многоугольников только треугольник является жесткой фигурой.
Это свойство треугольника используется во многих конструкциях (мосты, башенные краны, опоры линий электропередач).
башенный кран из треугольников
опоры ЛЭП из треугольников
Продемонстрируем на примере стрелы крана.
Конструкция представляет из себя последовательную комбинацию тетраэдров (красные) и четырехугольных пирамид (зелёные).
16
17
 
стропила крыши из треугольников
Стропила зданий имеют вид треугольников. Это придаёт им крепость и устойчивость.
жесткий треугольник в калитке
При устройстве садовой калитки обязательно прибивают планку (доску), иногда две планки, чтобы получились треугольники. Это придаёт крепость калитке, иначе её скоро перекосит.
 
От практических примеров применения жесткой треугольной конструкции возвращаемся к точным математическим телам – тетраэдру.
Тетраэдр будем рассматривать в виде рёберной конструкции.
Каждая из четырех сторон тетраэдра правильный треугольник. Так как стержни образующие эти правильные треугольники не подвержены деформации, то все вместе эти шесть стержней (рёбер) тетраэдра создают предельно жесткую конструкцию.
Ни одно другое тело не обладает такими прочностными характеристиками.
 
Предлагаем вам собрать модель тетраэдра из шести отдельных стержней (рёбер).
Для сборки потребуется распечатать чертеж на двух листах А4. Скачать развертки рёбер тетраэда можно здесь.
 
Сначала необходимо склеить каждое из шести рёбер тетраэдра.
Затем склеиваем основание из трех рёбер и к нему последовательно приклеиваем еще три ребра.
 
1. детали тетраэдра
2. собираем реберный тетраэдр
 
 
3. собираем реберный тетраэдр
4. собираем реберный тетраэдр
 
 
5. собираем реберный тетраэдр
6 .реберный тетраэдр
Получаем рёберную модель тетраэдра.
 
Вращение многогранника
 

Популярное

Флексо-куб

Приходилось ли вам сталкиваться с кубом, грани которого могут изменять свой цвет? Если да, то вполне вероятно вы уже сталкивались с...

Развертки просто необходимы в Mcdonalds

Знакомые каждому с детства коробочки для Биг-Мака и картошки, стаканчик для Кока-Колы так же делают из бумажных разверток.

Практическое применение развёрток

Достаточно часто возникает вопрос о практическом применении бумажных развёрток. Какой смысл в бумажном моделировании?

Многогранники на фестивале науки

Фестиваль Увлекательной Науки состоится в Москве 24 и 25 апреля 2015 года на физфаке Московского педагогического университета (станция метро Спортивная).

Двойственные пары многогранников

Что общего между додекаэдром и икосаэдром?  

Отличие выпусков № 12 и № 36 Волшебных граней

Когда мы готовили 36-ой выпуск «Волшебные грани», у наших коллег возник вопрос: «Почему мы опять собираемся говорить о правильных многогранниках,...

Куб Принца Руперта

В выпуске 25 «Волшебных граней» мы обратили взор читателя на то, что разрезая куб плоскостью, мы получаем в точке разреза сечение, имеющее форму...